Увеличенное время впрыска топлива причины: Время впрыска, фактор нагрузки и цикловое наполнение. » Motorhelp.ru диагностика и ремонт инжекторных двигателей

Содержание

Время впрыска, фактор нагрузки и цикловое наполнение. » Motorhelp.ru диагностика и ремонт инжекторных двигателей

Способность двигателя преобразовывать команды водителя в изменение скорости движения автомобиля, является важнейшим свойством двигателя. Каким образом это достигается? Рассмотрим наиболее широко распространенный случай, когда водитель, управляет положением педали акселератора, физически связанной с дроссельной заслонкой. Как известно управление мощностью двигателя возможно путем изменения количества рабочей смеси поступающей в цилиндры двигателя. Количество подаваемого топлива в цилиндры регулируется временем открытого состояния форсунки (время впрыска). Для понимания процессов происходящих в двигателе приведу 3 примера.
1. Холостой ход. Скорость вращения двигателя 880 об/мин. Расход воздуха 9 кг/ч. Время впрыска 3,7 мс.

2. Автомобиль стоит на месте. Угол открытия дроссельной заслонки 8%. Скорость вращения двигателя 4700 об/мин. Расход воздуха 45 кг/час. Время впрыска 3,7 мс.

3. Автомобиль едет в гору. Угол открытия дроссельной заслонки 30%. Скорость вращения двигателя 3000 об/мин. Расход воздуха 120 кг/час Время впрыска 20 мс.
От чего зависит время впрыска? Почему в одном случае при высоких оборотах маленькое время впрыска, а в другом случае при более низких оборотах время впрыска в разы больше? Здесь все дело в количестве поступившего воздуха в цилиндры в расчете на один такт работы двигателя. Эту величину принято называть цикловым наполнением. В случае, когда к двигателю не приложена нагрузка, даже при больших оборотах во впускном коллекторе создается давление ниже атмосферного (разряжение, чтобы было понятно) величиной около 30 кПа. Когда двигатель работает под нагрузкой, дроссельная заслонка открыта на большую величину, соответственно давление во впускном коллекторе выше и наполняемость цилиндров свежим зарядом топливной смеси гораздо больше, соответственно время впрыска будет тоже больше.
Вот что пишет Гирявец по этому поводу:
Величина циклового наполнения Gвц [мг/цикл] характеризует количество воздуха поступившего в цилиндр двигателя в процессе впуска, является одним из первичных управляющих параметров, определяющим возможный характер протекания paбочего цикла. Цикловое наполнение можно определить как количество воздуха, поступившего в цилиндр двигателя из впускной системы в конкретном рабочем цикле или при yстановившемся положении режимной точки, пренебрегая неравномерностью распределения воздуха по цилиндрам двигателя, как долю одного цилиндра в общей массе воздуха Mgв поступившей в цилиндры двигателя за рабочий цикл, соотнесенную с тактностью работы двигателя:

Где:
Gbc — величина циклового наполнения.
Mgb — общая масса воздуха поступившей в цилиндры двигателя
i – тактность двигателя
n — частота вращения коленчатого вала двигателя [мин -1]

Блок управления двигателем рассчитывает цикловое наполнение (мг/такт) цилиндра воздухом из расчета общего количества воздуха, поступившего в двигатель в соответствии с оборотами коленчатого вала. После этого рассчитывается количество топлива (цикловая подача топлива, мг/такт), которая должна попасть в цилиндр через форсунку.

Некоторые блоки, такие как январь 5.1 и 7.2 показывают этот напрямую параметр, а другие отображают относительное наполнение (например Bosch 7.9.7) и пересчитывают в фактор нагрузки. Но суть остается одна – чем больше нагрузка приложена к двигателю, тем больше будет цикловое наполнение и соответственно время впрыска.

Современные системы впрыска топлива, такие как Bosch 7.9.7, при расчете времени впрыска топлива форсункой учитывают множество факторов, такие как температура охлаждающей жидкости и воздуха, адаптационные коррекции, нагрузка на двигатель и др. Схема расчета времени впрыска приведена на рисунке ниже.

Расчет параметров нагрузки на двигатель электронного блока управления Bosch 7.9.7 ведется по формуле, приведенной на рисунке ниже.

Относительное наполнение – это отношение действительного количества свежего заряда смеси, поступившего в цилиндр двигателя к тому его количеству, которое могло бы поместиться в рабочем объеме цилиндра при атмосферном давлении и температуре.
Поскольку цикловое наполнение рассчитывается исходя из общей массы воздуха, поступившей в двигатель, далее мы рассмотрим какими методами можно измерить расход воздуха.

Если представить принцип работы двигателя как воздушного насоса, то будет проще понять, что самое главное в работе системы управления двигателем – это расчет количества воздуха поступившего в цилиндры. Именно на основании этих данных будет произведена дозированная подача топлива к поступившему во впускной коллектор воздуху, для того чтобы смесь как можно точнее соответствовала заданному составу.
Как измерить количество воздуха, поступившего в цилиндры двигателя?
Существуют несколько методов:
1. Дроссель – обороты. Зная количество оборотов двигателя и величину открытия дроссельной заслонки можно рассчитать количество воздуха, поступившего в двигатель. Этот метод не отличается точностью, поэтому системы впрыска данного типа обязательно оснащались обратной связью по датчику кислорода для коррекции состава смеси. Часто этот тип впрыска можно встретить на недорогих автомобилях концерна Volkswagen 80-90 гг. выпуска.
2. По датчику абсолютного давления (дад или map sensor). Зная величину разряжения (абсолютного давления) во впускном коллекторе также можно произвести расчет количества воздуха, поступившего в двигатель. Дад обязательно дополнялся датчиком температуры воздуха, так как плотность воздуха при различной температуре сильно отличается. Системы впрыска с дад нашли широкое распространение во всем мире из-за дешевизны и надежности. Для примера – почти все автомобили Daewoo работают по этому методу. Однако новые нормы экологичности стандарта Евро-4 и выше заставляют конструкторов автомобилей применять более точные методы расчета поступившего воздуха.
3. И этим методом является непосредственное измерение массы поступившего воздуха с помощью датчика массового расхода воздуха. Самый точный метод на сегодняшний день. Для примера можно привести автомобили ВАЗ, которые оснащаются этим датчиком.

Многие начинающие диагносты недооценивают важность показаний сканера по цикловому и относительному наполнению при диагностике двигателя. Далее рассмотрим какую полезную информацию несут в себе эти параметры.

Как правило, при возникновении каких –либо неисправностей, связанных с механикой двигателя, цикловое наполнение и нагрузка возрастают. Особенно это заметно на холостом ходу. Но прежде чем копать глубже, проверьте датчик массового расхода воздуха на предмет соответствия показаний норме, поскольку расчет циклового наполнения производится непосредственно с его показаний. При аварии датчика, Эбу берет данные по цикловому наполнению из таблицы, например такой:

Допустим вы заметили, что нагрузка на двигатель заметно больше, чем должно быть ( при условии отсутствия нагрузки от навесного оборудования, таких как кондиционер, генератор, гур и т.д.). Что в первую очередь надо проверить:
1. Пожалуй самая распространенная причина – смещение фаз газораспределения. Проверьте совпадение установочных меток.
2. Смещение угла опережения зажигания в более позднюю сторону. Проверьте задающий диск или отрегулируйте уоз для систем зажигания с трамблером.
3. Зажатые клапана (для двигателей с регулировкой зазоров клапанов).

Отмечу еще, что любая из перечисленных причин вызовет повышенный расход топлива, который напрямую связан с нагрузкой на двигатель.

параметры впрыска ВАЗ-2110. Допрос с пристрастием — журнал За рулем

При всей привлекательности автомобильных технологий середины ХХ века отказ от них закономерен. Обязательными для России стали, наконец, требования Евро II, за ними неизбежно последуют Евро III, потом Евро IV. В сущности, каждому сознательному автомобилисту предстоит радикально изменить собственное мировоззрение, сделав его основой не «гоночные» амбиции, культивировавшиеся целое столетие, а бережное отношение к цивилизации. Количество и состав выбросов автомобильного двигателя теперь ограничивают чрезвычайно жесткими рамками — хотя бы и при некоторой потере динамических показателей.

Добиться выполнения таких требований сумеем, только подняв уровень сервиса. Конечно, автолюбителям, не утратившим любознательности, «лишние» знания тоже не повредят. Хотя бы в прикладном смысле: грамотный человек меньше рискует быть обманутым недобросовестными мастерами, а это всегда актуально.

Итак, к делу. Сегодня автомобили ВАЗ выпускаются с контроллером Bosch M7.9.7. В сочетании с дополнительным датчиком кислорода в выхлопных газах и датчиком неровной дороги это обеспечивает выполнение норм Евро III и Евро IV. Конечно, теперь увеличилось количество контролируемых параметров. Вот о них и расскажем, предполагая, что мы, вы или диагност из сервиса вооружены сканером — например, ДСТ-10 (ДСТ-2).

Начнем с датчиков температуры: их два. Первый — на отводящем патрубке системы охлаждения (фото 1). По его показаниям контроллер оценивает температуру жидкости перед пуском двигателя — TMST (°С), ее значения при прогреве — ТМОТ (°С). Второй датчик измеряет температуру воздуха, поступающего в цилиндры, — TANS (°С). Он установлен в корпусе датчика массового расхода воздуха. (Здесь и далее выделенные сокращения те же, что в официальных руководствах по ремонту.)

Надо ли долго объяснять роль этих датчиков? Представьте, что контроллер обманут заниженными показаниями ТМОТ, а двигатель на самом деле уже прогрет. Начнутся проблемы! Контроллер будет увеличивать время открытия форсунок, пытаясь обогатить смесь — результат тут же обнаружит датчик кислорода и «настучит» контроллеру об ошибке. Контроллер попытается ее исправить, но тут снова вмешивается неверная температура…

Величина TMST перед запуском, помимо прочего, важна для оценки работы термостата по времени прогрева двигателя. К слову сказать, если автомобилем долго не пользовались, то есть температура двигателя сравнялась с температурой воздуха (с учетом условий хранения!), очень полезно сопоставить показания обоих датчиков перед пуском. Они должны быть одинаковы (допуск ±2°С).

А что будет, если отключить оба датчика? После пуска величину ТМОТ контроллер рассчитывает согласно алгоритму, заложенному в программу. А величину TANS принимает равной 33°С для 8-клапанного двигателя 1,6 л и 20°С для 16-клапанного. Очевидно, что исправность этого датчика очень важна при холодном пуске, особенно в мороз.

Следующий важный параметр — напряжение в бортовой сети UB. В зависимости от типа генератора оно может лежать в пределах 13,0- 15,8 В. Контроллер получает питание +12 В тремя путями: от АКБ, замка зажигания и главного реле. С последнего он вычисляет напряжение в системе управления и при необходимости (в случае понижения напряжения в сети) увеличивает время накопления энергии в катушках зажигания и длительность импульсов впрыска топлива.

Значение текущей скорости автомобиля выводится на дисплей сканера в виде VFZG. Оценивает ее датчик скорости (на коробке передач — фото 2) по частоте вращения корпуса дифференциала (погрешность не более ±2%) и сообщает контроллеру. Конечно, эта скорость должна практически совпасть с той, что показывает спидометр — ведь тросовый его привод остался в прошлом.

Если минимальные обороты холостого хода у прогретого двигателя выше нормы, проверим степень открытия дроссельной заслонки WDKBA, выраженную в процентах. В закрытом положении (фото 3) — ноль, у полностью открытой — от 70 до 86%. Нужно иметь в виду, что это относительная величина, связанная с датчиком положения заслонки, а не угол в градусах! (На устаревших моделях полному открытию дросселя соответствовали 100%.) На практике, если показатель WDKBA не ниже 70%, регулировать механику привода, что-то отгибать и т.п. нет необходимости.

При закрытом дросселе контроллер запоминает величину напряжения, поступающего с ДПДЗ (0,3–0,7 В), и хранит в энергозависимой памяти. Это полезно знать, если вы самостоятельно меняете датчик. В этом случае надо снять клемму с АКБ. (В сервисе для инициализации пользуются диагностическим прибором.) В противном случае измененный сигнал с нового ДПДЗ может обмануть контроллер — и обороты холостого хода не будут соответствовать норме.

Вообще же частоту вращения коленвала контроллер определяет с некоторой дискретностью. До 2500 об/мин точность измерений — 10 об/мин — NMOTLL, а весь диапазон — от минимума до срабатывания ограничителя — оценивает параметр NMOT с дискретностью 40 об/мин. Для оценки состояния двигателя более высокая точность в этом диапазоне не требуется.

Практически все параметры двигателя так или иначе связаны с расходом воздуха в его цилиндрах, контролируемым с помощью датчика массового расхода воздуха (ДМРВ — фото 4). Этот показатель, выраженный в килограммах в час (кг/ч), обозначается как ML. Пример: новый необкатанный 8-клапанный двигатель 1,6 л в прогретом состоянии на режиме холостого хода расходует 9,5- 13 кг воздуха в час. По мере приработки с уменьшением потерь на трение этот показатель существенно снижается — на 1,3- 2 кг/ч. Пропорционально меньше и расход бензина. Конечно, сопротивление вращению водяного и масляного насосов и генератора тоже сказывается, при эксплуатации несколько влияя на расход воздуха. В то же время контроллер рассчитывает и теоретическую величину расхода воздуха MSNLLSS для конкретных условий — частота вращения коленвала, температура охлаждающей жидкости. Это тот поток воздуха, который должен поступать в цилиндры через канал холостого хода. В исправном двигателе ML немного больше, чем MSNLLSS, — на величину перетечек через зазоры дросселя. А у неисправного двигателя, разумеется, возможны ситуации, когда расчетный расход воздуха больше фактического.

Углом опережения зажигания, его корректировками тоже заведует контроллер. Все характеристики хранятся в его памяти. Для каждых условий работы двигателя контроллер подбирает оптимальный УОЗ, который можно проверить — ZWOUT (в градусах). Обнаружив детонацию, контроллер уменьшит УОЗ — величина такого «отскока» выводится на дисплей сканера в виде параметра WKR_X (в градусах).

…Для чего системе впрыска, в первую очередь контроллеру, знать такие подробности? Надеемся ответить на этот вопрос в следующей беседе — после того как рассмотрим и другие особенности работы современного впрыскового мотора.

ДИАГНОСТИКА: параметры впрыска ВАЗ-2110. Допрос с пристрастием

ДИАГНОСТИКА: параметры впрыска ВАЗ-2110. Допрос с пристрастием

ДИАГНОСТИКА: параметры впрыска ВАЗ-2110. Допрос с пристрастием

Технические советы: Регулировка момента впрыска дизельного топлива

Что такое момент впрыска дизельного топлива?

Время впрыска, как и другое время, связанное с двигателями внутреннего сгорания, представляет собой процесс тщательного контроля того, когда должно произойти указанное сгорание.

 

Дизельный двигатель внутреннего сгорания представляет собой очень сложный и точный образец современной техники. Имея возможность контролировать точный момент подачи топлива в камеру сгорания, производители могут точно контролировать мощность и выбросы двигателя.

Подобно синхронизации свечей зажигания в бензиновом двигателе, синхронизация впрыска позволяет вам вносить коррективы, чтобы получить оптимальное количество топлива в идеальное время, чтобы сделать самый большой «взрыв», если хотите.

Независимо от того, являетесь ли вы владельцем-оператором или владеете собственной мастерской, крайне важно знать, что такое синхронизация впрыска и как ее отрегулировать. Тем не менее, автопроизводители разработали двигатель для работы с определенными параметрами, поэтому регулировка фаз газораспределения ТНВД может принести больше вреда, чем пользы, если она будет выполнена неправильно.

Зачем нужно настраивать время впрыска?

Существует несколько причин, по которым кому-то может понадобиться отрегулировать время впрыска. Чаще всего тайминги нужно корректировать, чтобы решить проблему с чрезмерным дымом или турбо задержкой. Почему эти проблемы возникли в первую очередь, это совсем другая история, но регулировка синхронизации ТНВД, скорее всего, решит проблему.

Можно ли регулировать момент впрыска на любом дизельном двигателе?

Конечно! Каким бы старым или новым ни был ваш дизельный двигатель, всегда будет под рукой ТНВД. Парни старой школы гордились тем, что могли регулировать синхронизацию вручную с помощью пары обычных ручных инструментов, которые были у всех под рукой.

К сожалению, в настоящее время мало что можно сделать с транспортным средством, не имея хотя бы базовых навыков работы с компьютером. Технологии развиваются быстрыми темпами, и когда-то простой дизельный двигатель был оснащен рядом компьютеров, которые контролируют все, от времени впрыска до температуры в кабине. Момент впрыска по-прежнему можно отрегулировать на современном грузовике, но теперь это делается с помощью ECM.

Опережение и замедление фаз газораспределения двигателя

Существует два основных способа регулировки фаз газораспределения ТНВД. Это можно сделать, опережая или замедляя фактическую точку входа топлива в камеру сгорания.

Опережение 

Опережение времени означает, что вы меняете, когда будет происходить процесс сгорания в зависимости от положения поршня.

При увеличении момента впрыска процесс сгорания происходит раньше, чем изначально предполагал производитель. Это должно увеличить мощность. Но, как и во всем, есть и недостатки в смещении времени.

Добавленный дым будет основным визуальным сигналом того, что кто-то передвинул время на дизельном двигателе. Чего вы, возможно, не знаете, так это того, что выбросы также могут значительно увеличиться за счет увеличения времени впрыска.

Защитники окружающей среды и производители двигателей должны найти тонкий баланс. Автопроизводители и энтузиасты хотят получить как можно больше энергии от своих дизельных рабочих лошадок, в то время как, с другой стороны, необходимо соблюдать строгие правила загрязнения окружающей среды. Это тема, по которой обе стороны регулярно сталкиваются друг с другом.

Замедление синхронизации двигателя

Замедление синхронизации, с другой стороны, делает прямо противоположное ускорению. Другими словами, топливо будет доставлено после того, как это было задумано производителем.

Редко можно услышать о людях, замедляющих расчет времени, в основном потому, что это один из лучших способов снизить выходную мощность. Однако, если все сделано правильно, это может помочь повысить эффективность использования топлива. Поскольку это не обычная процедура, мы не будем вдаваться в подробности об замедлении времени впрыска.

Как можно отрегулировать синхронизацию дизельного двигателя?

Регулировка момента впрыска на дизельном двигателе может иметь огромное значение как с точки зрения производительности, так и с точки зрения расхода топлива, если все сделано правильно. В зависимости от марки и модели вашего двигателя синхронизацию можно отрегулировать одним из нескольких способов.

Перепрограммирование ECM 

Переназначение ECM для выжимания большей мощности из двигателя производится с тех пор, как сам ECM. Для тех, кто знает, что делает (помните? мы уже говорили о том, как удобно работать с компьютером), это означает несколько щелчков мышью и пуф! У тебя больше власти. Конечно, это будет работать только в том случае, если ваш двигатель оснащен электронным ТНВД. и не механический.

Ручная регулировка ТНВД

Не так давно большинство дизельных двигателей работали механически, и ТНВД не был исключением. Простая отвертка и правильный набор торцевых головок позволят вам вручную отрегулировать ТНВД.

Если бы вы хотели сделать это, так сказать, «по книге», то для точного измерения и регулировки времени потребовался бы специальный зондирующий измеритель, но большинство делало это на слух. Вот хорошее пошаговое руководство для тех, кто хочет попытать счастья!

Модернизация распределительного вала

Распределительный вал играет важную роль в работе и работе двигателя. Кулачки распределительного вала — это результат бесчисленных часов и долларов, потраченных инженерами на то, чтобы добиться оптимальной производительности без чрезмерного воздействия на окружающую среду.

К счастью для нас, некоторые компании все еще производят распределительные валы с более агрессивными кулачками, что дает пользователю большую мощность. Замена распредвала обычно производится только из-за износа или в погоне за большей мощностью. Программная настройка может зайти так далеко, а иногда действительно требуется аппаратное обеспечение, чтобы получить дополнительных пони.

Замена толкателей и прокладок

Подобно новому распределительному валу, замена толкателей и прокладок может быть еще одним способом регулировки синхронизации. Прелесть этого в том, что новые толкатели кулачка и прокладки обычно стоят в разы меньше, чем новый или неоригинальный распредвал!

Преимущества и недостатки системы улучшения газораспределения

В этом мире нет ничего бесплатного. Есть плюсы и минусы опережения синхронизации дизельного ТНВД. Давайте посмотрим на некоторые из наиболее распространенных преимуществ и недостатков этого.

Преимущества

Опережение фаз газораспределения ТНВД не является чем-то новым. В большинстве случаев это делается для того, чтобы получить от двигателя больше мощности. Многие тюнеры дизельных двигателей увеличивают время, чтобы легко увеличить мощность. Кроме того, увеличивается расход топлива, поскольку двигателю приходится меньше работать, чтобы выдерживать такой же вес.

Недостатки 

Если бы это зависело от энтузиастов, ТНВД и двигатель были бы настроены с точностью до дюйма и выдавали бы максимальную мощность. Но мы должны думать о завтрашнем дне. Именно здесь вступают в действие правила выбросов, которые возвращают всех к реальности. Есть некоторые последствия увеличения времени впрыска, которые большинство не принимает во внимание. Выбросы выхлопных газов реальны, и, хотя промышленность иногда может слишком остро реагировать, это следует принимать во внимание.

Регулировка фаз газораспределения топливного насоса означает помощь двигателю в его максимальной производительности. У производителей есть заранее установленные сроки, которые часто напрямую зависят от норм выбросов. К счастью, дизельный двигатель становится настолько продвинутым, что мы все можем извлечь выгоду из увеличенной мощности, а также более высокого расхода топлива на галлон!

Персонал отдела автомобильных и тяжелых запчастей обладает техническими знаниями и опытом, чтобы помочь вам с внутренними потребностями вашего двигателя. Если у вас есть какие-либо нерешенные вопросы о времени работы топливного насоса или дизельных двигателях в целом, позвоните нашим сертифицированным техническим специалистам ASE по номеру 9. 0090 844-304-7688 или просто запросить расценки онлайн !

Связанные статьи:

Дизельные двигатели -топливные форсунки объяснены

Комплекты по ремонту дизельного двигателя и убедившиеся инжекторы

Diesel Injector Time: ISEX.

Выбор вправо Dieseel Diesel Timeor: ISX.

. Видео:

 

Мало времени? Получите вашу цитату онлайн!

Мы поняли: когда вам нужны запчасти для дизельных двигателей, время имеет решающее значение. Вот почему мы разработали систему онлайн-котировок HHP.

Просто заполните форму, указав свое имя, информацию о двигателе и необходимые детали, и наши сертифицированные ASE технические специалисты свяжутся с вами и составят смету. Это настолько близко к волшебству, насколько это возможно для дизельного двигателя!

Система впрыска топлива для экологически чистых дизельных двигателей

Система впрыска топлива для экологически чистых дизельных двигателей

Ханну Яаскеляйнен

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

  • Форсунки дизельного топлива
  • Отложения на форсунке

Abstract : Системы впрыска дизельного топлива играют ключевую роль в снижении выбросов для соответствия будущим стандартам выбросов, а также в достижении других рабочих параметров, включая экономию топлива и шум при сгорании. В дополнение к регулировке момента впрыска и давления впрыска регулирование скорости может улучшить выбросы, шум и крутящий момент. Многократное впрыскивание, в том числе предварительное впрыскивание, последующее впрыскивание и последующее впрыскивание, широко используются для контроля выбросов ТЧ и NOx, шума и управления последующей очисткой.

  • Введение
  • Время впрыска
  • Давление впрыска
  • Формирование скорости
  • Множественные инъекции
    • Обзор
    • Пилотный впрыск
    • Пост-инъекции
    • После инъекций

Введение

Как видно из предыдущих разделов о впрыске дизельного топлива, системы впрыска дизельного топлива претерпели монументальные изменения, начиная с конца 90-х годов 90-го века.0174 век. Системы впрыска P-L-N, характерные для дизельных двигателей 1920-х годов, практически исчезли из дизельных двигателей, предназначенных для самых передовых рынков. Эта эволюция была почти полностью обусловлена ​​необходимостью снизить выбросы выхлопных газов до уровней, которые были невозможны даже в 1990-х годах. Эти усовершенствования в оборудовании системы впрыска топлива позволили реализовать такие функции, как:

  • полностью гибкая синхронизация впрыска,
  • более высокое давление впрыска топлива и возможность регулировать давление топлива в зависимости от частоты вращения/нагрузки двигателя в соответствии с конкретными условиями работы двигателя,
  • адаптация скорости впрыска в течение одного события впрыска и
  • 90 139 событий множественной инъекции.

Хотя эти функции в основном обусловлены необходимостью снижения выбросов, во многих случаях их также можно использовать для снижения шума, увеличения удельной мощности и управления температурой выхлопных газов для повышения производительности систем доочистки, которые можно использовать для дальнейшего снижения выбросов. выбросы выхлопных газов.

Время впрыска

Контроль выбросов NOx. Регулировка момента впрыска является одним из основных средств снижения выбросов NOx. Механические системы впрыска топлива были первыми, в которых использовалась система регулирования времени впрыска. Однако по мере того, как электроника становится все более распространенной в управлении дизельными двигателями, форсунки с электронным управлением стали предпочтительным средством достижения регулируемого момента впрыска и предложили беспрецедентную гибкость в настройке времени впрыска. Механизмы снижения содержания NOx за счет замедления времени впрыска обсуждаются в другом месте.

Хотя сокращение NOx за счет замедления времени впрыска может быть эффективным, могут быть значительные компромиссы с точки зрения расхода топлива и выбросов твердых частиц. Во многих случаях эти компромиссы приходится решать за счет дополнительных усовершенствований конструкции двигателя. Одним из первых подходов к уменьшению штрафа за экономию топлива, связанного с замедлением времени впрыска, было уменьшение задержки воспламенения за счет использования высокой степени сжатия и более высокого давления впрыска 90–195 [685] 90–196 . Дополнительные меры, такие как снижение расхода масла, повышение давления наддувочного воздуха, увеличение давления впрыска, уменьшение размера отверстия сопла форсунки, снижение потерь на трение в двигателе, снижение температуры впускного коллектора и т. д., также могут быть приняты для контроля расхода топлива и Выбросы ТЧ увеличиваются.

До внедрения систем впрыска с электронным управлением время впрыска топлива обычно фиксировалось на постоянном значении по всей карте работы двигателя. Однако иногда использовались системы изменения времени впрыска для дополнительной гибкости и компенсации недостатков в работе двигателя. Некоторые системы PLN включают в себя механизм изменения времени для компенсации изменений задержки зажигания в зависимости от частоты вращения двигателя, чтобы поддерживать более постоянную и оптимальную фазу сгорания. В других случаях фиксированное время впрыска, необходимое для обеспечения соответствия выбросам NOx в течение сертификационного цикла, может привести к избытку углеводородов при малой нагрузке, дыму при ускорении, холодному дыму и неровностям холостого хода, которые можно преодолеть, опережая время впрыска при малых нагрузках только с незначительное увеличение выбросов NOx в рабочем цикле.

В период с 1987 по 1998 год, когда замедление времени впрыска с электронным управлением было основным средством сокращения выбросов NOx, одно из них означает, что многие североамериканские производители двигателей обычно использовали для компенсации штрафов за расход топлива, связанных с замедленным временем впрыска топлива, стратегию двойного отображения в двигателях с электронным управлением. . При таком подходе в переходных режимах, например, во время циклов сертификационных испытаний на выбросы, использовалась настройка номинального времени впрыска, обеспечивающая соблюдение нормативных требований по выбросам NOx. Однако, когда было установлено, что транспортное средство находится в крейсерском режиме, время впрыска было увеличено для улучшения экономии топлива. Это обеспечило значительное улучшение топливной экономичности в крейсерских условиях шоссе, с которыми обычно сталкиваются большегрузные автомобили, но также значительно увеличило выбросы NOx.

Время впрыска само по себе ограничено в своей способности снижать выбросы NOx. В дополнение к уже рассмотренным компромиссам. Выбросы NOx могут снова начать увеличиваться, если синхронизация достаточно запаздывает или двигатель может начать давать пропуски зажигания [2138] [2145] [2135] . Это устанавливает практический нижний предел около 4 г/кВтч NOx, который может быть достигнут с задержкой момента впрыска [2139] . Дальнейшее сокращение выбросов NOx потребовало дополнительных мер, таких как регулирование скорости впрыска, предварительный впрыск, управление синхронизацией впускных клапанов, рециркуляция отработавших газов и последующая обработка NOx. Хотя замедление времени впрыска больше не является основным средством контроля выбросов NOx, оно по-прежнему является важным инструментом, который можно использовать в сочетании с другими мерами контроля для обеспечения соблюдения нормативных предельных значений NOx.

Термическое управление. С внедрением высокоэффективной нейтрализации NOx замедление времени впрыска стало менее важным для контроля выбросов NOx. Тем не менее, это важный инструмент, который можно использовать для увеличения энтальпии и температуры выхлопных газов для управления тепловым режимом систем доочистки выхлопных газов. Это особенно полезно при холодном пуске до того, как температура последующей обработки станет достаточно высокой, чтобы обеспечить значительное снижение выбросов. Более низкие выбросы NOx, связанные с замедленным моментом впрыска, особенно важны в этих условиях для ограничения общих выбросов за ездовой цикл.

На рис. 1 показано влияние задержки впрыска на температуру на выходе из турбины турбонагнетателя для легкого дизельного двигателя, работающего при низкой нагрузке, характерной для цикла NEDC. При такой легкой нагрузке температура выхлопных газов может быть повышена до 235°C как для холодной, так и для теплой температуры охлаждающей жидкости. Это соответствует увеличению примерно на 45°C при температуре охлаждающей жидкости 30°C и примерно на 25°C при температуре охлаждающей жидкости 90°C. Следует отметить, что скорость рециркуляции отработавших газов в этом примере снижена при замедленном впрыске, чтобы поддерживать постоянные выбросы NOx [4852] .