Зажигание нива выставить: Установка зажигания на Ваз 21213 Нива карбюратор

Установка зажигания на автомобиле ВАЗ «Нива» (карбюратор)

Опубликовано:

12.03.2017

Неприхотливость, простота обслуживания и ремонтопригодность — это известное преимущество всех карбюраторных двигателей, которые устанавливались на автомобили семейства ВАЗ, включая весь модельный ряд «Нива». Но здесь кроется также их главный недостаток, а именно необходимость периодического проведения ручных регулировок. Например, после ремонта или при смене октанового числа используемого топлива от водителя требуется установка зажигания на автомобиле ВАЗ «Нива» (карбюратор), в то время как инжекторные системы в подобных манипуляциях не нуждаются.

Установка зажигания на Ниву устраняет проблему некорректной работы мотора

Из-за неверно установленного угла опережения зажигания мотор начинает работать некорректно, а его мощность снижается. Своевременное принятие мер по установке зажигания на ВАЗ-21213 «Нива» с карбюраторным двигателем позволяет устранить проблему. Если же вы решите выполнить все регулировки самостоятельно, то сможете ещё и сэкономить на услугах мастера. Для этого нужно лишь ознакомиться с руководством, которое приведено ниже.

Наиболее точно регулировка зажигания 21213 (карбюратор) может быть выполнена с применением стробоскопа. Однако это не единственный метод, доступный в гаражных условиях, тем более что многие автолюбители не имеют этого прибора в распоряжении и не намерены его покупать. Поэтому мы рассмотрим целых два способа установки оптимального угла опережения зажигания.

Для начала остановимся на регулировке при помощи стробоскопа. Подготовьте для предстоящей работы гаечный ключ на «13» и, собственно, сам стробоскоп. Если всё готово, можете приступать к выполнению настроечных операций, следуя пошаговой инструкции, но для начала оговоримся, что для корректной регулировки двигатель следует прогреть, а карбюратор должен быть как следует настроен. Итак, порядок действий выглядит следующим образом:

Для корректной регулировки зажигания двигатель надо прогреть

  1. Сначала, воспользовавшись специальным ключом для ручного вращения коленвала, установите поршень первого цилиндра таким образом, чтобы он находился в верхней мёртвой точке. Для этого ориентируйтесь по специальным меткам, которые расположены на шкиве коленчатого вала и на крышке газораспределительного механизма. Расположение поршня можно считать верным, если метка на шкиве совмещена со средней риской на крышке.
  2. Дальше нужно снять крышку датчика-распределителя, чтобы определить правильно ли расположен бегунок. Если он направлен на первый цилиндр, значит, положение поршня соответствует такту сжатия. Если потребуется, откорректируйте положение бегунка поворотом коленвала.
  3. Теперь следует произвести проверку и, если потребуется, установить оптимальный момент зажигания горючей смеси — подготовьте для этой операции стробоскоп. Для начала прибор следует подготовить к использованию, подключив его «минусовый» провод к массе машины, а «плюс» — к положительной клемме аккумулятора. Зажим датчика следует подключить к контакту высокого напряжения, предназначенного для зажигания смеси в первом цилиндре.
  4. Далее, запустите двигатель, установив обороты холостого хода (примерно 800 об/мин), и расположите стробоскоп таким образом, что его мигающий луч был направлен в сторону метки на шкиве коленвала. В процессе работы она должна совпадать со средней риской на крышке ГРМ. Если совмещение обеспечено, значит, на вашем автомобиле установлен правильный угол опережения, в противном случае придётся выполнить регулировку.
  5. При работающем моторе гаечным ключом ослабьте крепление датчика-распределителя, после чего не спеша поворачивайте его до тех пор, пока не добьётесь совпадения упомянутых выше меток. Если необходимо увеличить угол, трамблёр следует поворачивать против часовой стрелки, а поворачивая его по часовой стрелке, вы сможете обеспечить уменьшение угла опережения зажигания. По завершении регулировки не забудьте затянуть гайки крепления.

С помощью стробоскопа можно отрегулировать момент воспламенения рабочей смеси очень точно

Именно таким образом производится установка зажигания ВАЗ-21213 (карбюратор) с использование такого прибора, как стробоскоп. С его помощью вы сможет настроить момент воспламенения рабочей смеси не хуже, чем квалифицированный специалист автосервиса. Дальше мы рассмотрим вариант, не требующий применения этого прибора.

Как установить момент зажигания при помощи лампочки

Этот способ регулировки не требует покупки дополнительного оборудования и в то же время позволяет провести довольно точные настройки. Если он вам подходит, то прежде чем приступить к регулировке зажигания ВАЗ-21213 (карбюратор), подготовьте контрольную лампочку на 12 В, предварительно припаяв к её контактам по проводнику. И также вам понадобится гаечный ключ на «13» и ключ для ручного вращения коленвала. В процессе настройки придерживайтесь последовательности описанных ниже действий:

Регулировка момента зажигания по лампочке нужно проводить при выключенном двигателе

  1. В отличие от метода, предполагающего использование стробоскопа, регулировка момента зажигания по лампочке проводится при выключенном двигателе. Но здесь также необходимо установить поршень первого цилиндра в ВМТ, совместив метку на шкиве со средней риской на крышке распредвала. Аналогично первому методу снимите крышку распределителя и убедитесь, что бегунок направлен на первый цилиндр.
  2. Ослабив крепление трамблёра, подключите лампочку к массе и к низковольтному проводу катушки зажигания. Не забудьте установить на место крышку распределителя.
  3. Далее, включите зажигание автомобиля (лампочка в этот момент должна загореться) и медленным поворотом корпуса датчика-распределителя по часовой стрелке добейтесь выключения контрольной лампы. Как только это произошло, так же медленно поворачивайте трамблёр против часовой стрелки до тех пор, пока лампочка снова не погаснет. Установленный таким образом угол опережения обеспечит стабильную работу двигателя на любых оборотах.
  4. Всё, что теперь остаётся — затянуть гайки крепления датчика-распределителя.

После регулировочных работ необходимо проверить работу системы зажигания Нивы в дороге

Кстати, этот метод настройки зажигания подходит для большинства отечественных транспортных средств с карбюраторным двигателем, включая автомобили семейства УАЗ.

По завершении регулировочных работ нелишним будет проверить работу системы зажигания модели 21213 в дороге. Для этого разгоните машину до скорости 50 км/ч, включите четвёртую передачу и выжмите до упора педаль акселератора. Если в этот момент вы услышите тихие детонационные звуки, значит, момент воспламенения рабочей смеси настроен как надо. Отсутствие звуков свидетельствует о позднем зажигании, а если они слишком громкие, то момент слишком ранний. В каждом из этих двух случаев вам придётся повторно провести настройку.

В этой статье описаны два самых распространённых способа установки угла опережения зажигания, но они не единственные. Например, опытные мастера способны проводить регулировку, ориентируясь на собственный слух. Однако это метод доступен только для тех, кто досконально знает, как выставить зажигание на «Ниве» 21213 (карбюратор) и выполняет подобные работы регулярно. Для простого же автолюбителя достаточно будет вооружиться приведённым выше материалом, чтобы достичь достойного результата.

Зажигание Нива ВАЗ 21213, 21214, 2131 lada 4×4


Датчик-распределитель зажигания 3810.3706


Схема проверки бесконтактного датчика на автомобиле


Схема бесконтактной системы зажигания

Зажигание – бесконтактное. Состоит из датчика-распределителя, коммутатора, катушки зажигания, свечей, выключателя зажигания и проводов высокого и низкого напряжения. Небольшая часть автомобилей с двигателем 1600 см
3
оснащалась микропроцессорной системой управления двигателем, которая здесь не описана.

Датчик-распределитель зажигания 3810.3706 — четырехискровой, с бесконтактным датчиком управляющих импульсов и встроенными вакуумным и центробежным регуляторами опережения зажигания. Начальный угол опережения зажигания при частоте вращения коленчатого вала 750–800 мин
–1
должен составлять 1±1° до ВМТ.

Датчик-распределитель выполняет две основные функции: во-первых, задает момент искрообразования в зависимости от начальной его установки, числа оборотов коленчатого вала и нагрузки на двигатель, а во-вторых, распределяет импульсы высокого напряжения («искру») по цилиндрам в соответствии с порядком их работы — для этого служит ротор (бегунок). Для того чтобы не ошибиться при сборке, бегунок устанавливается на опорную пластину центробежного регулятора только в одном положении. В бегунке имеется помехоподавительный резистор сопротивлением 1 кОм.

Работа бесконтактного датчика основана на эффекте Холла. При включенном зажигании на датчик подается напряжение питания. При вращении валика датчика-распределителя через зазор датчика проходит стальной экран с прямоугольными вырезами. Пока в зазоре находится пластина экрана, с управляющего вывода датчика снимается напряжение, как только в зазоре оказывается вырез, напряжение на управляющем выводе резко падает. Таким образом, бесконтакный датчик за каждый оборот валика датчика-распределителя выдает четыре прямоугольных импульса (по числу вырезов в экране), что соответствует моменту зажигания в каждом из цилиндров двигателя.

Проверить работоспособность бесконтактного датчика можно, собрав схему, показанную на рисунке. Медленно вращая валик датчика-распределителя зажигания, следим за показаниями вольтметра. Напряжение должно резко меняться от минимального (не более 0,4 В) до максимального (не более, чем на 3 В меньше напряжения питания). Неисправный датчик ремонту не подлежит (за исключением обрыва проводов между самим датчиком и колодкой на корпусе датчика-распределителя). Если стальной экран с прорезями задевает за датчик (определяется по легкому заеданию или царапающему звуку при вращении валика, а также визуально, после частичной разборки датчика-распределителя), проверьте осевой люфт валика и посадку экрана. При необходимости замените датчик-распределитель.

Центробежный регулятор увеличивает угол опережения зажигания с ростом числа оборотов двигателя, вступая в работу при 900–1400 мин
–1
. При вращении валика датчика-распределителя грузики регулятора под действием центробежных сил расходятся, преодолевая сопротивление пружин, и сдвигают опорную пластину центробежного регулятора по часовой стрелке относительно валика. Для оптимальной работы регулятора пружины имеют разную жесткость. Более жесткая (толстая) пружина вступает в работу позже, примерно на середине полного хода пластины — поэтому она надета на стойку с зазором, тогда как более мягкая (тонкая) пружина всегда натянута. Максимальное перемещение опорной пластины ограничено вырезом в ней и составляет около 12° по распределителю, что соответствует углу опережения зажигания около 24° по коленчатому валу.

При осмотре центробежного регулятора убедитесь, что грузики свободно перемещаются на осях, не потеряны их демпферные пластмассовые колечки, тонкая пружина натянута, и опорная пластина возвращается под действием пружин в исходное положение. При необходимости смажьте валик датчика-распределителя несколькими каплями моторного масла.

Вакуумный регулятор увеличивает угол опережения зажигания в зависимости от нагрузки на двигатель. Он состоит из вакуумной камеры со стальной подпружиненной мембраной, которая тягой соединена с опорной пластиной бесконтактного датчика. Под действием разрежения мембрана прогибается, преодолевая сопротивление пружины, и поворачивает опорную пластину против часовой стрелки. Максимальное перемещение ограничено вырезом на тяге и составляет около 9° по распределителю (18° по коленчатому валу).

Разрежение для работы вакуумного регулятора отбирается от отверстия в смесительной камере карбюратора напротив дроссельной заслонки первой камеры. При частичном открытии заслонки (неполная нагрузка) разрежение за ней велико, и регулятор максимально сдвигает момент искрообразования в сторону опережения. При полном открытии заслонки (полная нагрузка) разрежение за ней падает, и регулятор возвращает опорную пластину бесконтактного датчика в исходное положение.

Грубо оценить исправность вакуумного регулятора можно непосредственно на автомобиле. На работающем двигателе отсоединяем от штуцера карбюратора вакуумный шланг, ведущий к регулятору. Если теперь создать в шланге разрежение (можно ртом), обороты двигателя должны возрасти, а при снятии разрежения – вновь снизиться. Разрежение должно сохраняться по крайней мере несколько секунд, если пережать шланг. Визуально в работоспособности вакуумного регулятора можно убедиться, частично разобрав датчик-распределитель (см. тут) и подавая разрежение к впускному штуцеру регулятора. При этом экран датчика-распределителя должен поворачиваться на угол 9±1°, а при снятии разрежения – без заедания возвращаться обратно.

Точную проверку и настройку вакуумного и центробежного регуляторов опережения зажигания производят на специальных стендах. В домашних условиях это делать не рекомендуется. При выходе из строя вакуумного регулятора его следует заменить, при неисправности центробежного – заменить датчик-распределитель.

Коммутатор — типа 3620.3734, или HIM-52, или ВАТ10.2, или 76.3734, или RT1903, или PZE4022 — размыкает цепь питания первичной обмотки катушки зажигания, преобразуя управляющие импульсы датчика в импульсы тока в катушке зажигания. Коммутатор проверяется осциллографом по специальной методике и неремонтопригоден; при подозрении на неисправность рекомендуется его заменять. Запрещается отсоединять разъем коммутатора при включенном зажигании – это может вызвать его повреждение (равно как и других компонентов системы зажигания).

Катушка зажигания — типа 27.3705 или 27.3705-01, или 8352.12, или АТЕ1721 — маслонаполненная, с разомкнутым магнитопроводом. Данные для проверки: сопротивление первичной обмотки при 25°С – (0,45±0,05) Ом, вторичной обмотки – (5,0±0,5) кОм. Сопротивление изоляции на массу – не менее 50 МОм.

Свечи зажигания – типа А17ДВР или А17ДВРМ, или А17ДВРМ1, или их импортные аналоги (с помехоподавительными резисторами сопротивлением 4–10 кОм). Зазор между электродами – 0,7–0,8 мм.

Высоковольтные провода – с распределенным сопротивлением (2550±270) Ом/м. Запрещается прикасаться к высоковольтным проводам на работающем двигателе – это может привести к электротравме. Запрещается также пускать двигатель или позволять ему работать с разорванной высоковольтной цепью (снятыми проводами или крышкой датчика-распределителя) – это может привести к прогару изоляции и выходу из строя электронных компонентов системы зажигания. Как исключение допускается кратковременная проверка системы зажигания «на искру», при этом контакт проверяемого высоковольтного провода должен быть надежно закреплен на расстоянии 8–10 мм от «массы» автомобиля. Запрещается удерживать провод руками или инструментом (даже с изолированными ручками).

Выключатель зажигания – типа 2101-3704000-11, с противоугонным запорным устройством. При повороте ключа в положение «зажигание» напряжение поступает на управляющий вход дополнительного реле, которое, в свою очередь, подает напряжение на катушку зажигания и коммутатор.

Набор головок: техническое обслуживание системы зажигания вашего автомобиля

Техническое обслуживание и снаряжение

Джесси Кросс

6 мая 2021 г. Чтение через 4 мин.

Фото: рынок

Джесси Кросс начал свою карьеру в 1982 году как автомобильный поденщик, был редактором журнала Performance Car и подписал контракт с неизвестным писателем по имени Джереми Кларксон. Теперь он пишет об автомобильных технологиях и тратит свое время на восстановление пары быстрых Фордов, 1968 GT390 Mustang в фастбэке и тот же автомобиль Ford Sierra Cosworth для долгосрочных испытаний, которым он управлял, будучи редактором Performance Car. Здесь он делится техническими советами для начинающих автолюбителей.

Если у вас есть классический автомобиль, выпущенный задолго до 1980 года, скорее всего, он будет иметь систему зажигания старой школы, а не электронную. До электронных твердотельных систем зажигания существовала гораздо более элегантная, хотя и более хлопотная механическая система, состоящая из распределителя, контактов прерывателя, плеча ротора и конденсатора. Этот набор деталей часто является одним из самых первых портов захода, если двигатель вашего классического автомобиля плохо себя ведет, поэтому небольшое профилактическое обслуживание будет иметь большое значение для поддержания вашей гордости и радости в работе, как хорошо смазанная машина, на которую мы все надеемся. за.

Как и современные электронные системы, более старая установка также представляла собой катушку зажигания и провода высокого напряжения (HT), передающие высокое напряжение на свечи зажигания. Катушка зажигания — это то, что фактически генерирует искру на каждой свече зажигания, генерируя ток очень высокого напряжения. Распределитель буквально распределяет этот ток высокого напряжения на каждую свечу зажигания точно в нужный момент. Неважно, сколько цилиндров у двигателя, в большинстве автомобилей будет одна катушка и один распределитель, обслуживающий все цилиндры.

Внутри распределителя находится набор «точек» прерывателя контактов, который представляет собой просто переключатель для замыкания и размыкания цепи, конденсатор (конденсатор), вращающийся кулачок, приводимый в движение распределительным валом двигателя, рычаг ротора и верхнюю часть распределителя, на крышке распределителя отходит несколько высоковольтных проводов, по одному на каждый цилиндр. Ток высокого напряжения (высокого напряжения) от катушки подается на верхнюю часть крышки распределителя по одному высоковольтному проводу. Подпружиненный контакт проводит ток к центру плеча ротора.

Катушка фактически содержит две катушки, первичную обмотку и вторичную обмотку, и работает по принципу электромагнитной индукции. Когда ток проходит через катушку провода, он создает электромагнитное поле, что и происходит, когда система зажигания включена, а точки замкнуты. Ток течет от батареи через первичную катушку через замкнутые точки на землю, замыкая электрическую цепь.

Фото: RM Sotheby’s

Волшебство происходит, когда точки открываются. Ток первичной обмотки внезапно прерывается, и электромагнитное поле исчезает или «схлопывается». Когда магнитное поле коллапсирует, в любом проводе, проходящем через поле, «индуцируется» ток. В данном случае этот провод является вторичной обмоткой катушки зажигания.

Ток очень высокого напряжения около 20 000 вольт генерируется во вторичной обмотке и направляется через плечо ротора, через контакт в крышке распределителя, на высоковольтный провод и на свечу зажигания. Когда ротор вращается, ток высокого напряжения по очереди направляется на каждый высоковольтный провод, и провода подключаются к свече зажигания каждого цилиндра в соответствии с порядком зажигания конкретного двигателя.

Конденсатор существует из-за странного закона физики, называемого электродвижущей силой, ЭДС или «обратной ЭДС». Когда точки размыкаются и магнитное поле схлопывается, в обмотках первичной катушки возникает ток. Этот ток создаст массивную искру или дугу через точки и отправит их в раннюю могилу, поэтому конденсатор подключен к точкам, чтобы поглотить его.

Теперь все это нужно переварить, но встаньте перед своей машиной со снятой крышкой распределителя, и то, что здесь было объяснено, станет довольно очевидным, так что о техническом обслуживании. Прежде всего, места размыкания контактов должны открываться на определенный зазор, не слишком маленький и не слишком большой. Это жизненно важно, потому что катушке и конденсатору нужно время, чтобы сделать свою работу. Типичный зазор для британских автомобилей составляет 15 тыс. (15 тысячных дюйма), но он зависит от автомобиля, двигателя и даже типа распределителя, поэтому сверьтесь с руководством по ремонту, чтобы получить правильное значение. Зазор на свече зажигания также зависит от двигателя, и оба они регулируются с помощью щупов — дешевого и простого ручного инструмента с набором лезвий разной толщины. Имейте в виду, что существуют имперские и метрические щупы, поэтому обязательно используйте правильные.

Фото: Кайл Смит

При выключенном зажигании (а это проще сделать с вынутыми свечами и без компрессии) выбираем передачу вроде вторую или третью и раскачиваем машину туда-сюда пока точки не достигнут максимального зазора ровно с пяткой на вершине любого из выступов кулачка. Кулачок слегка вращается против пружин и противовесов, чтобы увеличить угол опережения зажигания по мере того, как двигатель набирает обороты, поэтому, когда вы приближаетесь, вы можете настроить его пальцами, чтобы проверить, что точки действительно широко открыты, насколько это возможно. Как только это будет сделано, взломайте зажимной винт в точках и отрегулируйте зазор, если это необходимо. Это неудобно, и они часто двигаются при повторном затягивании, поэтому не торопитесь и перепроверьте с помощью датчиков. При проверке очков через некоторое время они вполне могли закрыться, так как пятка очков (волоконная или пластиковая) изнашивается во время использования.

Одной из ключевых задач конденсатора является предотвращение быстрого перегорания точек, но при их выходе из строя двигатель может вообще не запуститься, дать пропуски зажигания или работать плохо. Время от времени их стоит менять, но вам нужно иметь правильный (с правильным электрическим значением) для двигателя. Несмотря на хороший конденсор, наконечники покроются ямками, поэтому либо замените их, либо, если питтинг незначительный, слегка пощекочите их небольшим количеством влаги и сухости между двумя поверхностями.

И все! На автомобилях определенного возраста система зажигания является одним из самых первых портов вызова, если ваш двигатель плохо себя ведет, и хотя важно следить за состоянием системы зажигания, это очень весело, и нет ничего лучше, чем видеть ваш двигатель работает как орешек после тюнинга.

Читайте также

Как работают свечи зажигания и что они могут рассказать о вашем двигателе | DIY
Что нужно знать при замене свечей зажигания | DIY
Все, что вам нужно знать о масле для вашего классического автомобиля

Назад к основам: Как работает катушка зажигания

Все системы зажигания современных бензиновых двигателей используют катушки зажигания для одной и той же основной функции: создания высокого напряжения, необходимого для образования искры на свече зажигания. Профессионалы послепродажного обслуживания будут знакомы с их назначением и основными характеристиками, но они могут не знать о глубоких научных принципах, на которые они полагаются. Здесь мы объясняем, как электромагнетизм лежит в основе важной роли катушки зажигания…

История катушек зажигания

Хотя системы зажигания, безусловно, развивались с течением времени, в частности, включали в себя все больше и больше электроники, они по-прежнему несут на себе черты оригинальных систем зажигания с катушками, появившихся более 100 лет назад. назад.

Первая система зажигания на основе катушки принадлежит американскому изобретателю Чарльзу Кеттерингу, который разработал систему зажигания на основе катушки для крупного производителя автомобилей около 1910/1911. Впервые он разработал электрическую систему, которая одновременно питала стартер и зажигание. Аккумулятор, генератор и более полная электросистема автомобиля обеспечивали относительно стабильное электропитание катушки зажигания.

В системе Кеттеринга (рис. 1) использовалась одна катушка зажигания для создания высокого напряжения, которое передавалось на плечо ротора, которое эффективно направляло напряжение на серию электрических контактов, расположенных в узле распределителя (по одному контакту на каждый цилиндр). Затем эти контакты были соединены проводами свечей зажигания со свечами зажигания в такой последовательности, которая позволяла распределять высокое напряжение на свечи зажигания в правильном порядке зажигания цилиндров.

Рисунок 1: Основные компоненты системы зажигания Kettering

Система зажигания Kettering стала фактически единственным типом системы зажигания для серийных бензиновых автомобилей и оставалась такой до тех пор, пока зажигание не включалось и не управлялось электронным способом. системы начали заменять механические системы зажигания в 1970-х и 1980-х годах.

Основной принцип работы катушки зажигания

Для получения необходимого высокого напряжения в катушках зажигания используется взаимосвязь между электричеством и магнетизмом.

Когда электрический ток протекает через электрический проводник, такой как катушка с проволокой, он создает вокруг катушки магнитное поле (рис. 2). Магнитное поле (или, точнее, магнитный поток) фактически является накопителем энергии, которая затем может быть преобразована обратно в электричество.

Рис. 2: Создание магнитного поля при протекании электрического тока через катушку

Когда электрический ток первоначально включен, ток быстро увеличивается до максимального значения. Одновременно магнитное поле или поток будут постепенно увеличиваться до максимальной силы и станут стабильными, когда стабилизируется электрический ток. Когда электрический ток затем отключается, магнитное поле возвращается к катушке провода.

На силу магнитного поля влияют два основных фактора:

1) Увеличение тока, подаваемого на катушку с проводом, усиливает магнитное поле

2) Чем больше витков в катушке, тем сильнее магнитное поле.

Использование изменяющегося магнитного поля для индукции электрического тока

Если катушка с проводом подвергается воздействию магнитного поля, а затем магнитное поле изменяется (или перемещается), это создает электрический ток в катушке с проводом. Этот процесс известен как «индуктивность».

Это можно продемонстрировать, просто перемещая постоянный магнит по катушке. Движение или изменение магнитного поля или магнитного потока индуцирует электрический ток в проводе катушки (рис. 3).

Рис. 3. Изменяющееся или движущееся магнитное поле индуцирует электрический ток в катушке

На величину индуцированного в катушке напряжения влияют два основных фактора:

  1. Чем быстрее изменение (или скорость движения) магнитное поле и чем больше изменение напряженности магнитного поля, тем больше индуцированное напряжение.
  2. Чем больше количество витков в катушке, тем больше индуцированное напряжение.

Использование коллапсирующего магнитного поля для индукции электрического тока

Когда магнитное поле создается путем подачи электрического тока на катушку с проводом, любое изменение электрического тока (увеличение или уменьшение тока) создает такое же изменение магнитного поля. Если отключить электрический ток, магнитное поле разрушится. Затем разрушающееся магнитное поле индуцирует электрический ток в катушке (рис. 4). Рисунок 4: Если электрический ток, используемый для создания магнитного поля, отключается, магнитное поле разрушается, что индуцирует другой электрический ток в катушке

Точно так же, как увеличение скорости движения магнитного поля по катушке с проводом увеличивает напряжение, индуцируемое в катушке, если схлопывающееся магнитное поле может схлопываться быстрее, это вызовет более высокое напряжение. Кроме того, в катушке также может быть наведено более высокое напряжение, если количество витков в катушке увеличено.

Взаимная индуктивность и действие трансформатора

Если две катушки провода расположены рядом или вокруг друг друга, и электрический ток используется для создания магнитного поля вокруг одной катушки (которую мы называем первичной обмоткой), магнитное поле также будет окружать вторую катушку (или вторичную обмотку). Когда электрический ток отключается, а магнитное поле исчезает, оно индуцирует напряжение как в первичной, так и во вторичной обмотках. Это известно как «взаимная индуктивность» (рис. 5).

Рис. 5: Магнитное поле первичной обмотки также окружает вторичную обмотку. Схлопывание поля индуцирует электрические токи в обеих обмотках

Для катушек зажигания (и многих типов электрических трансформаторов) вторичная обмотка состоит из большего количества витков, чем первичная обмотка. Когда магнитное поле разрушается, во вторичной обмотке возникает более высокое напряжение, чем в первичной обмотке (рис. 6).

Рисунок 6: Здесь вторичная обмотка имеет больше витков, чем первичная обмотка. Когда магнитное поле разрушается, напряжение во вторичной обмотке будет больше, чем напряжение, индуцированное в первичной обмотке

Первичная обмотка катушки зажигания обычно содержит от 150 до 300 витков провода; вторичная обмотка обычно содержит от 15 000 до 30 000 витков провода, или примерно в 100 раз больше, чем первичная обмотка.

Первоначально магнитное поле создается, когда электрическая система автомобиля подает примерно 12 вольт на первичную обмотку катушки зажигания. Когда на свече зажигания требуется искра, система зажигания отключит подачу тока на первичную обмотку, что приведет к коллапсу магнитного поля. Разрушающееся магнитное поле вызовет в первичной обмотке напряжение порядка 200 вольт; но напряжение, индуцированное во вторичной обмотке, будет примерно в 100 раз больше, около 20 000 вольт.

Используя эффекты взаимной индуктивности и используя вторичную обмотку, которая имеет в 100 раз больше витков, чем первичная обмотка, можно преобразовать исходное 12-вольтовое питание в очень высокое напряжение. Этот процесс преобразования низкого напряжения в высокое называется «действием трансформатора».

В катушке зажигания первичная и вторичная обмотки намотаны на железный сердечник, который помогает концентрировать и усиливать силу магнитного поля и потока, что делает катушку зажигания более эффективной.